
Get started with GitLab CI/CD

Sonny LION
RPW Operation Centre (ROC)

Join GitLab !

Sign in to a GitLab:

● with your LDAP account: https://gitlab.obspm.fr/

● or using your personal gitlab.com account: https://gitlab.com/

Demo sources (public repository):

● https://gitlab.obspm.fr/slion/gitlab-ci-cd-demo

https://gitlab.obspm.fr/
https://gitlab.com/

Development Workflow Summary

Commit

New codes are
integrated to the base

code

Build

Source code is
converted into an
executable form

Test

Checks the interaction
between builds and if

the app is working

Deploy

Deploys the app to
production

environment

 This manual process takes up a huge amount of time and energy, which could
have been used for development instead.

 CI/CD to the rescue !

CI-CD concepts

Reduces Errors in
Code

Speeds up Coding
Process

Integrates Code
Seamlessly

 Continuous integration, delivery and deployment is known collectively as
CI-CD

 CI-CD essentially involves continuously building, testing and deploying code
changes at every small iteration, reducing chance of developing new code
based on bugged or failed previous versions.

CI-CD step by step

Continuous Integration

For every push to the repository, you can create a set of scripts
to build and test your application automatically. These scripts
help decrease the chances that you introduce errors in your
application.

Continuous Delivery

Continuous Delivery is a step beyond Continuous Integration. Not
only is your application built and tested each time a code change
is pushed to the codebase, the application is also automatically
prepared for a release to production.

Continuous Deployment

Continuous deployment is like continuous delivery, except that
releases happen automatically.

GitLab CI-CD ?

 GitLab CI/CD is a powerful tool built into Gitlab that allows you to apply Continuous
Integration, Continuous Delivery, and Continuous Deployment to your software with no
third-party application or integration needed. Moreover you can visualize all the steps in
the GitLab UI.

GitLab CI/CD workflow (1/3) - Push code changes

 You can start by discussing a code implementation in an issue and
working locally on your proposed changes.

 Then you can push your commits to a feature branch in a remote
repository that’s hosted in GitLab. The push triggers the CI/CD
pipeline for your project

GitLab CI/CD workflow (2/3) - Continuous Integration

Gitlab runs automated scripts (sequentially or in parallel) to build and
test your application.

GitLab CI/CD workflow (3/3) - Review, merge and deployment

Get your code reviewed and approved then merge the feature branch
into the default branch.

GitLab CI/CD deploys your changes automatically to a production
environment.

CI/CD pipelines

Pipelines are the top-level component of continuous integration, delivery, and deployment.

Pipelines comprise:

- Jobs, which define what to do. For example, jobs that compile or test code.
- Stages, which define when to run the jobs. For example, stages that run tests after

stages that compile the code.

Jobs are executed by runners. Multiple jobs in the same stage are executed in parallel, if
there are enough concurrent runners.

If all jobs in a stage succeed, the pipeline moves on to the next stage.

If any job in a stage fails, the next stage is not (usually) executed and the pipeline ends
early.

Get started - New project (1/2)

Create a blank project using the Gitlab UI

Get started - New project (2/2)

Get started - First CI/CD pipeline with Gitlab

Step 1

Step 2

 The .gitlab-ci.yml file is a
YAML file where you configure
specific instructions for GitLab
CI/CD.

 In this file, you define the
structure and order of jobs,
including conditional
execution.

Get started - The YAML file (.gitlab-ci.yml)

stages: # List of stages for jobs, and their order of execution

 - build

 - test

 - deploy

build-job: # This job runs in the build stage, which runs first.

 stage: build

 script:

 - echo "Compiling the code..."

 - echo "Compile complete."

unit-test-job: # This job runs in the test stage.

 stage: test # It only starts when the job in the build stage completes successfully.

 script:

 - echo "Running unit tests... This will take about 60 seconds."

 - sleep 60

 - echo "Code coverage is 90%"

lint-test-job: # This job also runs in the test stage.

 stage: test # It can run at the same time as unit-test-job (in parallel).

 script:

 - echo "Linting code... This will take about 10 seconds."

 - sleep 10

 - echo "No lint issues found."

Demo 01

https://gitlab.obspm.fr/slion/gitlab-ci-cd-demo/-/tree/demo/01_simple_example

Pipeline stuck on pending

GitLab Runners ?

GitLab Runner is the open source project written in Go that is used to run your CI/CD jobs
and send the results back to GitLab

It can be run as a single binary; no language-specific requirements are needed.

You can install GitLab Runner on several different supported operating systems.

Runner registration

After you install the application, you have to register individual runners. When you register a
runner, you are setting up communication between your GitLab instance and the machine
where GitLab Runner is installed.

Executors

GitLab Runner implements a number of executors that can be used to run your builds in
different scenarios:

● Docker > In a separate and isolated Docker container
● Shell > Locally on the machine where GitLab Runner is installed
● SSH > On a remote machine by executing commands over SSH
● Kubernetes > on a Kubernetes cluster
● etc.

The executors support different platforms and methodologies for building a project.

Examples

If you want your CI/CD job to run PowerShell commands, you might install GitLab Runner on
a Windows server and then register a runner that uses the shell executor.

If you want your CI/CD job to run commands in a custom Docker container, you might install
GitLab Runner on a Linux server and register a runner that uses the Docker executor.

Runners access and Tags

Who has access to runners in the GitLab UI

There are three types of runners, based on who you want to have access:

● Shared runners are for use by all projects
● Group runners are for all projects and subgroups in a group
● Specific runners are for individual projects

When you register a runner, you specify a token for the GitLab instance, group, or project.
This is how the runner knows which projects it’s available for.

Tags

When you register a runner, you can add tags to it.

When a CI/CD job runs, it knows which runner to use by looking at the assigned tags.

For example, if a runner has the ruby tag, you would add this code to your project’s
.gitlab-ci.yml file:

 When the job runs, it uses the runner with the ruby tag
my-job:

 tags:

 - ruby

Check available runners

Commit changes to trigger the CI/CD pipeline

Fix the pipeline

default:

 image: alpine

 tags:

 - docker_dio

stages: # List of stages for

jobs, and their order of execution

 - build

 - test

 - deploy

Set the default docker image to alpine and add the docker_dio tag

Demo 02

https://gitlab.obspm.fr/slion/gitlab-ci-cd-demo/-/tree/demo/02_fix_pending_job

Services

The services keyword defines a Docker image that runs during a job linked to the Docker
image that the image keyword defines. This allows you to access the service image during
build time.

The service image can run any application, but the most common use case is to run a
database container, for example:

● MySQL
● PostgreSQL
● Redis
● etc.

It’s easier and faster to use an existing image and run it as an additional container than to
install mysql, for example, every time the project is built.

You’re not limited to only database services. You can add as many services you need to
.gitlab-ci.yml or manually modify config.toml. Any image found at Docker Hub or your private
Container Registry can be used as a service.

 Services are not shared between jobs

Demo 03

https://gitlab.obspm.fr/slion/gitlab-ci-cd-demo/-/tree/demo/03_postgres_database

Cache and artifacts

Use cache for dependencies, like packages you download from the internet. Subsequent jobs
that use the same cache don’t have to download the files again, so they execute more
quickly. Cache is stored where GitLab Runner is installed.

Artifacts are generated by a job, stored in GitLab, and can be downloaded. Use artifacts to
pass intermediate build results between stages.

Cache

● Define cache per job by using the cache:
keyword. Otherwise it is disabled.

● Subsequent pipelines can use the cache.

● Subsequent jobs in the same pipeline can
use the cache, if the dependencies are
identical.

● Different projects cannot share the
cache.

Artifacts

● Define artifacts per job.

● Subsequent jobs in later stages of the same
pipeline can use artifacts.

● Different projects cannot share artifacts.

● Artifacts expire after 30 days by default. You
can define a custom expiration time.

● The latest artifacts do not expire if keep latest
artifacts is enabled.

● Use dependencies to control which jobs fetch
the artifacts.

Good caching practices

To ensure maximum availability of the cache, do one or more of the following:

● Tag your runners and use the tag on jobs that share the cache.

● Use runners that are only available to a particular project.

● Use a key that fits your workflow. For example, you can configure a different cache for
each branch.

For runners to work with caches efficiently, you must do one of the following:

● Use a single runner for all your jobs.

● Use multiple runners that have distributed caching, where the cache is stored in S3
buckets. Shared runners on GitLab.com behave this way. These runners can be in
autoscale mode, but they don’t have to be.

● Use multiple runners with the same architecture and have these runners share a
common network-mounted directory to store the cache. This directory should use NFS
or something similar. These runners must be in autoscale mode

Demo 04

https://gitlab.obspm.fr/slion/gitlab-ci-cd-demo/-/tree/demo/04_python_with_coverage

Test and deploy a Python package

We start from a repository containing the sources of a simple python application, some
tests, the documentation and some coding conventions to check.

sources

docs

tests

guidelines

requirements

Registries

Package Registry

The GitLab Package Registry acts as a private or public registry for a variety of common
package managers (npm, PyPI, Ruby gems, etc.). You can publish and share packages, which
can be easily consumed as a dependency in downstream projects.

Container Registry

The GitLab Container Registry is a secure and private registry for container images. It’s built
on open source software and completely integrated within GitLab. Use GitLab CI/CD to
create and publish images. Use the GitLab API to manage the registry across groups and
projects.

Check if the package registry feature is enabled

Artifacts, test reports and coverage

test the code and display coverage

pytest:

 stage: test

 tags:

 - docker_dio

 before_script:

 - python --version

 - pip install --upgrade pip

 - pip install poetry

 - poetry config virtualenvs.in-project true --local

 - poetry install

 coverage: '^TOTAL.+?(\d+\%)$'

 script:

 - poetry run pytest --cov=demo_app --junitxml=report.xml

 - poetry run coverage xml

 artifacts:

 reports:

 junit: report.xml

 cobertura: coverage.xml

Test coverage visualization

Once configured, if you create a merge request that triggers a pipeline which collects
coverage reports, the coverage is shown in the diff view. This includes reports from any job
in any stage in the pipeline.

The coverage displays for each line:

● covered (green)
● no test coverage (orange)
● no coverage information

Tag-triggered deployment

You can also use GitLab CI/CD to build and publish packages

publish python package on gitlab registry

publish:

 stage: deploy

 tags:

 - docker_dio

 before_script:

 - python --version

 - pip install --upgrade pip

 - pip install poetry

 script:

 # publish on a dedicated and centralized repository

 - poetry config repositories.gitlab

${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/packages/pypi

 - poetry build

 - poetry publish -r gitlab -u gitlab-ci-token -p $CI_JOB_TOKEN

 only:

 - tags

 - web

Exploring GitLab Pages

With GitLab Pages, you can publish static websites directly from a repository in GitLab.

Generate the documentation

deploy doc pages

pages:

 stage: deploy

 tags:

 - docker_dio

 script:

 - pip install -r docs/requirements.txt

 - sphinx-build -b html docs public

 artifacts:

 paths:

 - public

 rules:

 - if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH

A specific job called pages in the configuration file makes GitLab aware that you’re deploying a
GitLab Pages website.

GitLab always deploys your website from a
very specific folder called public

Usinge rules we specify that the website
should be deployed only from the default
branch

Pipeline schedules

Pipelines are normally run based on certain conditions being met. For example, when a
branch is pushed to repository.

Pipeline schedules can be used to also run pipelines at specific intervals. For example:

● Every month on the 22nd for a certain branch.
● Once every day.

In addition to using the GitLab UI, pipeline schedules can be maintained using the Pipeline
schedules API.

Schedule timing is configured with cron notation

Triggering pipelines through the API

Triggers can be used to force a pipeline rerun of a specific ref (branch or tag) with an API
call.

Adding a new trigger

Go to your Settings > CI/CD under Triggers to add a new trigger. The Add trigger button
creates a new token which you can then use to trigger a rerun of this particular project’s
pipeline.

Every new trigger you
create, gets assigned a
different token which you
can then use inside your
scripts or .gitlab-ci.yml. You
also have a nice overview of
the time the triggers were
last used.

Revoking a trigger

You can revoke a trigger any time by going at your project’s Settings > CI/CD under Triggers
and hitting the Revoke button. The action is irreversible.

Trigger a pipeline using cURL

Passing plain text tokens in public projects is a security issue. Potential attackers
can impersonate the user that exposed their trigger token publicly in their
.gitlab-ci.yml file. Use CI/CD variables to protect trigger tokens.

curl -X POST \

 -F token=<my-token> \

 -F "ref=<ref-name-like-branch-or-tag>" \

 https://gitlab.obspm.fr/api/v4/projects/<project-id>/trigger/pipeline

To trigger a pipeline you need to send a POST request to the GitLab API endpoint:

The required parameters are the trigger’s token and the Git ref on which the trigger is
performed. Valid refs are branches or tags. The :id of a project can be found by querying
the API or by visiting the CI/CD settings page which provides self-explanatory examples.

By using cURL you can trigger a pipeline rerun with minimal effort, for example:

POST /projects/:id/trigger/pipeline

curl --request POST \

"https://gitlab.example.com/api/v4/projects/<project-id>/trigger/pipeline?token=TOKEN&ref=main"

Alternatively, you can pass the token and ref arguments in the query string:

This is just the beginning...

Gitlab comes with a lot of built-in features and you still have a lot to discover...

https://docs.gitlab.com/

https://docs.gitlab.com/

