

SHAMAN and Storage Virtualization

Adil Hasan Univ. of Liverpool Toulouse Workshop on Storage Virtualization 2nd June 2009

Co-funded by the European Union

XFROX

In Con Tec

() FernUniversität in Hagen

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Industrious Media

University Humanities Advanced Technology of Glasgow & Information Institute

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

SHAMAN Collaborators:

Toulouse Storage Virtualization Workshop

What is SHAMAN?

- Sustaining HeritAge through Multivalent ArchiviNg.
- FP7 EU Integrated Project start Dec/07 finish Dec/11.
- Aim to investigate long-term preservation of data-sets.

What is SHAMAN?

- Issues:
 - Accommodate unknown changes to hardware (infrastructure).
 - Accommodate unknown changes to preservation tools (processes).
 - Accommodate unknown changes to format and description of data (content).

Infrastructure

• Hardware will change:

- Provide infrastructure layer on-top of hardware.
- Encapsulate changes, only hardware layer worries about changes.
- Uniform interface to hardware; driver maps from hardware interface to infrastructure interface.
- Logical-to-physical object mapping; insulates from changes in data location.
- Record characteristics of hardware (for debugging).

- Components of process will change:
 - Use abstract language to describe preservation processes (these are the policies).
 - Translate from abstract language to actual workflows.
 - Insulates from changes to work-flow engines or services.
 - Abstract description of processes must be preserved.

- Format and description of data will change:
 - Try to keep data in original format (save space), render to user with migratable tool.
 - Migrate data-sets that cannot be rendered reliably (closed source format, complex, etc).
 - Use standards for description of data.
 - Ensure dictionary of terminology (domain-specific terms) archived.

- Preservation of a digital object requires:
 - data-format, data-description, processes, hardware
- Can regard this collection as the context of the data.
- Want to capture this context in a single unit; the Preservation Description Information.
- PDI must be related to data.
- PDI itself must be preserved.

- OAIS describes long-term archive system.
- Used in many projects. Is the basis for SHAMAN.
- Needs improvements:
 - Preserving process information necessary.
 - Pre-Ingest phase required (recognise importance of assembling data for ingest).
 - Post-Access phase required (recognise importance of further processing after extraction of data).

extended-OAIS

extended-OAIS

- Further observations:
 - Preservation Planning must encompass Ingest and Access.
 - Preservation Planning requires input from Producer, Consumer and Management.
 - Roles must be further refined to understand better mapping to existing business roles.

- Essentially 3-types of storage:
 - Ingest Storage holds ingested data where AIP is created. Temporary Storage
 - Dissemination Storage holds data for access where DIP is assembled. Temporary Storage.
 - Archival Storage holds archived data and description (i.e. AIP). Permanent Storage.

- Ingest and Dissemination are most-likely frequent-access systems.
 - Viewed as cache-systems for the Archival Storage.
 - System must have good performance.
- Archival storage less-frequently access, must be reliable.

- Amount of digital data increasing rapidly.
- Many institutions collaborate.
- Makes sense to make use of collaborators storage.
- Allows storage to scale with data volume.
- Geographically distributed data guards against storage failure.

- Data Grids provide a means of combining distributed resources into logical resource.
- Insulate storage from access to storage.
 - Provide uniform access to resources through drivers.
- Removes dependence on physical location through logical-physical file mapping.
- Virtualization of storage.

- Observations:
 - Data Grid resource may not be part of the collaboration. May be third-party.
 - Need SLA on provision of resource such that it is possible to replace resource with different type (e.g. cloud).
 - Need to ensure SLA is implemented (evidence).
 - Need to make sure preservation processes are sufficiently encapsulated to run on collaborator/external resources.

- Data Grid provides distributed storage.
- Need to manage that storage. To apply policies to that storage.
- IRODS policy-driven data management system.
- Allows virtualization of storage AND virtualization of policies.
- Rule-engine manages the policies.
- Policies implemented as rules.

2nd June 2009 Adil Hasan

- Can view iRODS rule-engine as managing the preservation processes:
 - Replicate data, checksum data, transform data, extract metadata etc.
- Require tool to transform from abstract policies to rules (in preparation).
- Rule execution must be logged (which rule, microservice, result, when run) for auditing.
- Validation of each microservice for auditing.

- Cloud, such as Amazon S3 can be viewed as another storage resource within the data grid.
- SLA would ensure Cloud resources provide necessary functionality.
 - Would need to ensure cloud providers are capable of providing mechanism to ensure SLA enforced.
 - Checks can be implemented as rules in iRODS.

- Long-term access can be achieved by:
- Migration to new formats
 - Requires more storage to hold original and migrated copy. Intensive process.
 - May be only option for some closed formats.
- Rendering of old format
 - Tool capable of reading old format means 'migration' on demand.
 - Need to ensure all the required properties of data are accessible.

- SHAMAN make use of Multivalent tool:
 - Renders data in old format to user.
 - Written in Java.
 - Capable of reading different formats through different drivers ('media engines').
- Plan to archive tool and package-up tool and data in original format for download to allow access to data.

- Fab4 browser interface to Multivalent.
- Allows annotations to be made on document.
- Annotations saved in separate file from document.
- Data not altered.
- Also apply different behaviours such as magnifying lens

- Annotations semantically attached to document.
 - For images will need to be re-worked.
- Allows annotations and behavours to appear in correct position in document in different formats.

- Successful discovery requires as much information about the digital object as possible is supplied during ingest.
- Also requires information is extracted and indexed.
- SHAMAN make use of powerful Cheshire digital library system to extract information such that it is discoverable.
- Processes involved in extraction must be preserved.

Preservation Layers

Access Interface		
Administration		
Preservation Process Interface		
Metadata Extraction		Content Mgmt
Storage Interface (Grid)		
CLOUD	••••	HSS

Provides uniform access to data.

Manages access & system, Transforms pres processes from abstract

Interface provides uniform access to different preservation processes.

Grid interfaces to different Types of storage. Provides Uniform Interface

- To ensure data usable in the long-term:
 - Insulate from hardware changes.
 - Insulate from changes to processes.
 - Insulate from changes to data format.
 - Insulate from changes to description.
 - Ensure as much information as possible about data is captured.
 - Ideally test data is understandable without ANY external dependencies.
- SHAMAN aims to provide a framework that accounts for these issues.